Nanotechnology Now – News Story: A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible

Home > News > A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible

March 2nd, 2020

A Carbon Nanotube Microprocessor Mature Enough to Say Hello: Three new breakthroughs make commercial nanotube processors possible

Abstract:
Engineers at MIT and Analog Devices have created the first fully-programmable 16-bit carbon nanotube microprocessor. It’s the most complex integration of carbon nanotube-based CMOS logic so far, with nearly 15,000 transistors, and it was done using technologies that have already been proven to work in a commercial chip-manufacturing facility. The processor, called RV16X-NANO, is a milestone in the development of beyond-silicon technologies, its inventors say.

Source:
spectrum.ieee.org

Bookmark:

Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

News and information

‘Smart’ diaper for bedside urine testing Peer-Reviewed Publication May 6th, 2022

‘Nanomagnetic’ computing can provide low-energy AI researchers, show May 6th, 2022

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

Highest degree of purity achieved for polarized X-rays: Helmholtz Institute Jena opens up new possibilities at the European X-ray laser European XFEL May 6th, 2022

Hardware

Powering the future: Smallest all-digital circuit opens doors to 5 nm next-gen semiconductor February 11th, 2020

SUNY Poly Professor Partners with Leading Institutions on NSF Award for Quantum Information Science Research: SUNY Poly Research Builds Upon Recent Quantum-related Research Initiatives and Workshops January 27th, 2020

Do you Kyoto? World-leading companies share their approaches to environmentally friendly business at NAUM’19 October 14th, 2019

Future of portable electronics — Novel organic semiconductor with exciting properties: researchers synthesize a new substance that can potentially be adapted to form a semiconductor with wide applications in electronics September 13th, 2019

Possible Futures

‘Nanomagnetic’ computing can provide low-energy AI researchers, show May 6th, 2022

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

Highest degree of purity achieved for polarized X-rays: Helmholtz Institute Jena opens up new possibilities at the European X-ray laser European XFEL May 6th, 2022

Dynamic metasurfaces and metadevices empowered by graphene May 6th, 2022

Chip Technology

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

Reconfigurable silicon nanoantennas controlled by vectorial light field May 6th, 2022

In balance: Quantum computing needs the right combination of order and disorder: Study shows that disorder in quantum computer chips needs to be designed to perfection / Publication in ‘Nature Communications’ May 6th, 2022

New hardware integrates mechanical devices into quantum tech April 22nd, 2022

Nanoelectronics

The physics of a singing saw: Insights on centuries-old folk instrument is underpinned by a mathematical principle that may pave the way for high-quality resonators for sensing, electronics and more April 22nd, 2022

Eyebrow-raising: researchers reveal why nanowires stick to each other February 11th, 2022

Visualizing temperature transport: An unexpected technique for nanoscale characterization November 19th, 2021

Leibniz Prize winner Professor Dr. Oliver G. Schmidt moves to Chemnitz University of Technology: President Professor Dr. Gerd Strohmeier refers to an ‘absolute top transfer’ September 10th, 2021

Announcements

Self-propelled, endlessly programmable artificial cilia: Simple microstructures that bend, twist and perform stroke-like motions could be used for soft robotics, medical devices and more May 6th, 2022

Highest degree of purity achieved for polarized X-rays: Helmholtz Institute Jena opens up new possibilities at the European X-ray laser European XFEL May 6th, 2022

Dynamic metasurfaces and metadevices empowered by graphene May 6th, 2022

Reconfigurable silicon nanoantennas controlled by vectorial light field May 6th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Oregon State University research pushes closer to new therapy for pancreatic cancer May 6th, 2022

New error mitigation approach helps quantum computers level up: New error mitigation approach helps quantum computers level up, ASCR: Quantum computers are prone to errors that limit their usefulness in scientific research May 6th, 2022

Rice ‘metalens’ could disrupt vacuum UV market: Solid-state nanophotonic technology could potentially replace cabinets of equipment May 6th, 2022

Reconfigurable silicon nanoantennas controlled by vectorial light field May 6th, 2022

Leave a Comment