Nanotechnology Now – Press Release: Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution

Home > Press > Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution

CdS spheres and CdS nanorods with different lengths were constructed by hydrothermal method and solvothermal process with varied reaction time, respectively. The medium-length CdS nanorods subjected to ultrasonic stimulation exhibits excellent piezocatalytic H2 evolution performance due to the strong piezoelectric potential and benign mechanical strain collecting ability. CREDIT Chinese Journal of Catalysis

Abstract:
Damaged ecosystems are sending signals of global climate crisis and energy scarcity to wake human beings up to respond by reducing excessive carbon dioxide and producing green sustainable energy. The enormous potential is maintained by piezocatalysis, the absence of daylight constraints and abundant energy sources, including vibration, water flow, friction, tidal power, water droplets and human movement. Piezocatalytic hydrogen evolution has emerged as a promising direction for the collection and utilization of mechanical energy and the efficient generation of sustainable energy throughout the day.

Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution

Dalian, China | Posted on May 13th, 2022

Piezoelectric materials for catalysis are emerging and enriching, including perovskite-type materials (eg BaTiO3, ZnSnO3, CH3NH3PbI3), wurtzite-type materials (eg ZnO, ZnS and CdS), two-dimensional (2D) materials (eg MoS2, Bi2WO6 and 2D black phosphorus) and organic polymer (eg poly(vinylidene fluoride) (PVDF), polydimethylsiloxane (PDMS) and graphite carbon nitride). Some wurtzite crystal materials with non-centrosymmetric (NCS) structure have been found to be promising piezocatalytic materials to alleviate the bottleneck of photocatalytic efficiency.

The typical NCS wurtzite structured CdS with a space group of P63mc and point group of 6mm shows piezoelectric effect, which is expected to effectively speed up the separation of carriers and increase the overall catalytic efficiency through piezoelectric polarization field. Unfortunately, the high-efficiency piezocatalytic hydrogen production of CdS-based materials has remained challenging so far, which is limited to the rapid recombination and deactivation of photogenerated carriers.

Recently, a research team led by Prof. Hongwei Huang from China University of Geosciences (Beijing) reported that two types of CdS nanostructures, namely CdS nanorods and CdS nanospheres, were prepared to probe the above-mentioned issues. Under ultrasonic vibration, CdS nanorods afforded a superior piezocatalytic H2 evolution rate of 175 μmol g-1 h-1 in the absence of any co-catalyst, which is nearly 2.8 times that of CdS nanospheres. The higher piezocatalytic activity of CdS nanorods is derived from their larger piezoelectric coefficient and stronger mechanical energy harvesting capability, affording a greater piezoelectric potential and more efficient separation and transfer of intrinsic charge carriers, as elucidated through piezoelectric response force microscope, finite element method, and piezoelectrochemical tests. This study provides a new concept for the design of efficient piezocatalytic materials for converting mechanical energy into sustainable energy via microstructure regulation.

####

About Dalian Institute of Chemical Physics, Chinese Academy Sciences
Chinese Journal of Catalysis is co-sponsored by Dalian Institute of Chemical Physics, Chinese Academy of Sciences and Chinese Chemical Society, and it is currently published by Elsevier group. This monthly journal publishes in English timely contributions of original and rigorously reviewed manuscripts covering all areas of catalysis. The journal publishes Reviews, Accounts, Communications, Articles, Highlights, Perspectives, and Viewpoints of highly scientific values ​​that help understanding and defining of new concepts in both fundamental issues and practical applications of catalysis. Chinese Journal of Catalysis ranks among the top six journals in Applied Chemistry with a current SCI impact factor of 8.271. The Editors-in-Chief are Profs. Can Li and Tao Zhang.

At Elsevier http://www.journals.elsevier.com/chinese-journal-of-catalysis

Manuscript submission https://mc03.manuscriptcentral.com/cjcatal

For more information, please click here

Contacts:
Fan He
Dalian Institute of Chemical Physics, Chinese Academy Sciences

Office: 86-411-843-79240

Copyright © Dalian Institute of Chemical Physics, Chinese Academy Sciences

If you have a comment, please contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are responsible for the accuracy of the content.

Bookmark:
Delicious
Digg
Newsvine
Google
Yahoo
Reddit
Magnoliacom
Furl
Facebook

The results were published in Chinese Journal of Catalysis:

News and information

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tissue for long-term remission and lung elimination tumor in this form of metastasized breast tumor cancer May 13th, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Possible Futures

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tissue for long-term remission and lung elimination tumor in this form of metastasized breast tumor cancer May 13th, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Discoveries

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tissue for long-term remission and lung elimination tumor in this form of metastasized breast tumor cancer May 13th, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Announcements

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tissue for long-term remission and lung elimination tumor in this form of metastasized breast tumor cancer May 13th, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

New nanomechanical oscillators with record-low loss May 13th, 2022

Small microring array enables large complex-valued matrix multiplication May 13th, 2022

Study finds nanomedicine targeting lymph nodes key to triple negative breast cancer treatment: In mice, nanomedicine can remodel the immune microenvironment in lymph node and tissue for long-term remission and lung elimination tumor in this form of metastasized breast tumor cancer May 13th, 2022

The future of desalination? A fast, efficient, selective membrane for purifying saltwater May 13th, 2022

Energy

Faster, more efficient nanodevice to filter proton and alkaline metal ions: Monash University researchers have developed a faster, more efficient nanodevice to filter proton and alkaline metal ions which will help design next-generation membranes for clean energy technology, conv April 8th, 2022

USTC found a pathway to high-quality ZnSe quantum wires April 8th, 2022

Three dimensional Mn-doped NixSy/Ni2P and Mn-doped Ni2O3/Ni2P nanosheets as efficient electrocatalysts for alkaline overall water splitting April 8th, 2022

Scavenger nanoparticles could make fuel cell-powered vehicles a reality April 1st, 2022

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Achieving higher performance with potassium ion battery April 15th, 2022

Faster, more efficient nanodevice to filter proton and alkaline metal ions: Monash University researchers have developed a faster, more efficient nanodevice to filter proton and alkaline metal ions which will help design next-generation membranes for clean energy technology, conv April 8th, 2022

Interdisciplinary team studies challenges and prospects of lithium-CO2 dioxide batteries April 8th, 2022

Self-standing mesoporous Si film can power lithium-ion batteries Peer-Reviewed Publication April 1st, 2022

Leave a Comment